skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Kuldeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The surface brightness profiles of globular clusters are conventionally described with the well-known King profile. However, observations of young massive clusters (YMCs) in the local Universe suggest that they are better fit by simple models with flat central cores and simple power-law densities in their outer regions (such as the Elson-Fall-Freeman, or EFF, profile). Depending on their initial central density, YMCs may also facilitate large numbers of stellar collisions, potentially creating very massive stars that will directly collapse into intermediate-mass black holes (IMBHs). Using Monte CarloN-body models of YMCs, we show that EFF-profile clusters transform to Wilson or King profiles through natural dynamical evolution, but that their finalW0parameters do not strongly correlate to their initial concentrations. In the densest YMCs, runaway stellar mergers can produce stars that collapse into IMBHs, with their final masses depending on the treatment of the giant star envelopes during collisions. If a common-envelope prescription is assumed, where the envelope is partially or entirely lost, stars form with masses up to 824M, collapsing into IMBHs of 232M. Alternatively, if no mass loss is assumed, stars as massive as 4000Mcan form, collapsing into IMBHs of ∼4000M. In doing so, these runaway collisions also deplete the clusters of their primordial massive stars, reducing the number of stellar-mass BHs by as much as ∼40%. This depletion will accelerate the core collapse, suggesting that the process of IMBH formation itself may produce the high densities observed in some core-collapsed clusters. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026
  2. ABSTRACT The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star N-body models of massive (N ∼ 105–107) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 (∼30 per cent) of the YMCs with >6 × 104 M⊙ from Grudić et al. 2022 and integrate them to z = 0 using the cluster Monte Carlo code, CMC. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: Younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that N-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems. 
    more » « less